MATH 1A - FINAL EXAM DELUXE - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (10 points, 5 points each) Find the following limits
(a) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-x$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-x & =\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right) \frac{\sqrt{x^{2}+1}+x}{\sqrt{x^{2}+1}+x} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}+1-x^{2}}{\sqrt{x^{2}+1}+x} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x^{2}+1}+x} \\
& =\frac{1}{\infty} \\
& =0
\end{aligned}
$$

(b) $\lim _{x \rightarrow 0^{+}} x^{x^{2}}$

1) Let $y=x^{x^{2}}$
2) Then $\ln (y)=x^{2} \ln (x)$
3)

$\lim _{x \rightarrow 0^{+}} \ln (y)=\lim _{x \rightarrow 0^{+}} x^{2} \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{-2}} \stackrel{H}{=} \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-2}{x^{3}}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{-2}=0$
4) Hence

$$
\lim _{x \rightarrow \infty} y=e^{0}=1
$$

2. (10 points) Use the definition of the derivative to calculate $f^{\prime}(x)$, where:

$$
\begin{aligned}
& f(x)=x^{2} \\
f^{\prime}(a)= & \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
= & \lim _{x \rightarrow a} \frac{\left.x^{2}-a^{2}\right)}{x-a} \\
= & \lim _{x \rightarrow a} \frac{(x-a)(x+a)}{x-a} \\
= & \lim _{x \rightarrow a} x+a \\
= & 2 a
\end{aligned}
$$

Hence, $f^{\prime}(x)=2 x$
3. (10 points, 5 points each) Find the derivatives of the following functions
(a) y^{\prime}, where $x^{y}=y^{x}$

Hint: Take lns first!
Taking lns:

$$
y \ln (x)=x \ln (y)
$$

Differentiating and solving for y^{\prime} :

$$
\begin{aligned}
y^{\prime} \ln (x)+\frac{y}{x} & =\ln (y)+\frac{x y^{\prime}}{y} \\
y^{\prime}\left(\ln (x)-\frac{x}{y}\right) & =\ln (y)-\frac{y}{x} \\
y^{\prime} & =\frac{\ln (y)-\frac{y}{x}}{\ln (x)-\frac{x}{y}}
\end{aligned}
$$

(b) y^{\prime} at $(0,0)$, where $\sin (y)=x^{2}-y^{2}$

Differentiating:

$$
\cos (y) y^{\prime}=2 x-2 y y^{\prime}
$$

Now plug in $x=0$ and $y=0$:

$$
\begin{aligned}
(1) y^{\prime} & =0-0 \\
y^{\prime} & =0
\end{aligned}
$$

4. (15 points) Assume Peyam's happiness function is given by:

$$
H=M^{2} L+2 G
$$

Where:

- M is the happiness due to holding office hours
- L is the happiness due to lecturing
- G is the happiness due to grading exams

Assume that at the end of the summer:

- Peyam's happiness due to holding office hours is 5 utils/week, and is decreasing by 2 utils/week
- Peyam's happiness due to lecturing is 10 utils/week, and is decreasing by 1 util/week
- Peyam's happiness due to grading exams, is 2 utils/week, and is decreasing by 1 utils/week.

Question: By how much is Peyam's happiness increasing/decreasing at the end of the summer?

1) No picture needed
2) $\mathrm{WTF} \frac{d H}{d t}$
3) $H=M^{2} L+2 G$
4) Differentiating, we get:

$$
\frac{d H}{d t}=2 M \frac{d M}{d t} L+M^{2} \frac{d L}{d t}+2 \frac{d G}{d t}
$$

5) Plug in $M=5, \frac{d M}{d t}=-2, L=10, \frac{d L}{d t}=-1, \frac{d G}{d t}=-1$:

$$
\frac{d H}{d t}=2(5)(-2)(10)+(5)^{2}(-1)+2(-1)
$$

6)

$$
\frac{d H}{d t}=-200-25-2=-227
$$

Peyam's happiness is decreasing by 227 utils/week. Fortunately, this doesn't correspond to reality :)
5. (20 points) What is the area of the largest rectangle that can be put inside the parabola $y=4-x^{2}$?

1) Picture:

1A/Math 1A Summer/Exams/FDrectangle.png

2) In the picture above, the length of the rectangle is $2 x$ and the width is y, so the area is:

$$
A=2 x y
$$

Now (x, y) is on the parabola, so $y=4-x^{2}$, whence:

$$
A(x)=2 x\left(4-x^{2}\right)=8 x-2 x^{3}
$$

3) Constraint: The constraint is $0 \leq x \leq 2$. (you find the 2 by solving $4-x^{2}=0$)
4)

$$
A^{\prime}(x)=8-6 x^{2}=0 \Longleftrightarrow 6 x^{2}=8 \Longleftrightarrow x^{2}=\frac{8}{6}=\frac{4}{3} \Longleftrightarrow x=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}}
$$

Now $A(0)=0$ and $A(2)=0$, so by the closed interval method, $A\left(\frac{2}{\sqrt{3}}\right)$ is the biggest area, and:

$$
A\left(\frac{2}{\sqrt{3}}\right)=2\left(\frac{2}{\sqrt{3}}\right)\left(4-\left(\frac{2}{\sqrt{3}}\right)^{2}\right)=\frac{4}{\sqrt{3}}\left(4-\frac{4}{3}\right)=\frac{4}{\sqrt{3}}\left(\frac{8}{3}\right)=\frac{32}{3 \sqrt{3}}
$$

6. (15 points)
(a) (13 points) Show that the following equation has exactly one solution:

$$
\cos (x)=2 x
$$

Let $f(x)=\cos (x)-2 x$
At least one solution: $f(0)=1-0=1>0, f(\pi)=-1-$ $2 \pi<0, f$ is continuous, so by the IVT, f has at least one zero.

At most one solution: Suppose f has two zeros a and b. Then $f(a)=f(b)=0$, so by Rolle's theorem, there is some c with $f^{\prime}(c)=0$.

But $0=f^{\prime}(c)=-\sin (c)-2<0$, so $0<0$, contradiction!
Therefore, f has exactly one zero, and hence $\cos (x)=2 x$ has exactly one solution.
(b) (2 points) Use part (a) to show that the following function has exactly one critical point:

$$
g(x)=\sin (x)-x^{2}
$$

$g^{\prime}(x)=\cos (x)-2 x=f(x)$. But we've shown in (a) that f has exactly one zero, hence $g^{\prime}(x)$ has exactly one zero, that is g has exactly one critical point.
7. (20 points) Use the definition of the integral to evaluate:

$$
\int_{0}^{1}\left(x^{3}-2\right) d x
$$

You may use the following formulas:

$$
\sum_{i=1}^{n} 1=n \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Note: -2 for not writing $\lim _{n \rightarrow \infty}$

Preliminary work:

- $f(x)=x^{3}$
- $a=0, b=1, \Delta x=\frac{1-0}{n}=\frac{1}{n}$
- $x_{i}=\frac{i}{n}$

$$
\begin{aligned}
\int_{1}^{2} x^{3}-2 d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{1}{n}\right)\left(\left(\frac{i}{n}\right)^{3}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{1}{n}\right)\left(\frac{i^{3}}{n^{3}}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{3}}{n^{4}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left(\sum_{i=1}^{n} i^{3}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left(\frac{n^{2}(n+1)^{2}}{4}\right) \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{4} \\
& =\frac{1}{4}
\end{aligned}
$$

Check: (not required, but useful)

$$
\int_{0}^{1} x^{3} d x=\left[\frac{x^{4}}{4}\right]_{0}^{1}=\frac{1}{4}-0=\frac{1}{4}
$$

8. (30 points, 5 points each) Find the following:
(a) $\int_{-1}^{1} \sqrt{1-x^{2}} d x$

Note: Don't spend too much time on this one, either you know it or you don't!

The integral represents the area of a semicircle of radius 1 , hence:

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x=\frac{1}{2} \pi(1)^{2}=\frac{\pi}{2}
$$

(b) The antiderivative F of $f(x)=3 e^{x}+4 \sec ^{2}(x)$ which satisfies $F(0)=1$.
The MGAD of f is $F(x)=3 e^{x}+4 \tan (x)+C$. To find C, use the fact that $F(0)=1$, so $3+0+C=1$, so $C=-2$, hence:

$$
F(x)=3 e^{x}+4 \tan (x)-2
$$

(c) $g^{\prime}(x)$, where $g(x)=\int_{x^{2}}^{e^{x}} \sin \left(t^{3}\right) d t$

Let $f(t)=\sin \left(t^{3}\right)$, then: $g(x)=F\left(e^{x}\right)-F\left(x^{2}\right)$, so:

$$
g^{\prime}(x)=F^{\prime}\left(e^{x}\right)\left(e^{x}\right)-F^{\prime}\left(x^{2}\right)(2 x)=f\left(e^{x}\right) e^{x}-f\left(x^{2}\right)(2 x)=\sin \left(e^{3 x}\right) e^{x}-\sin \left(x^{6}\right)(2 x)
$$

(d) $\int(\cos (x))^{3} \sin (x) d x$

Let $u=\cos (x)$, then $d u=-\sin (x) d x$, so:

$$
\int(\cos (x))^{3} \sin (x) d x=\int u^{3}(-d u)=-\frac{u^{4}}{4}+C=-\frac{(\cos (x))^{4}}{4}+C
$$

(e) $\int_{e}^{e^{2}}\left(\frac{(\ln (x))^{3}}{x}\right) d x$

Let $u=\ln (x)$, then $d u=\frac{1}{x} d x$, and $u(e)=\ln (e)=1$ and $u\left(e^{2}\right)=2$, so:

$$
\int_{e}^{e^{2}}\left(\frac{(\ln (x))^{3}}{x}\right) d x=\int_{1}^{2} u^{3} d u=\left[\frac{u^{4}}{4}\right]_{1}^{2}=\frac{15}{4}
$$

(f) The average value of $f(x)=\sin \left(x^{5}\right)\left(\cos \left(x^{2}\right)+e^{x^{2}}+x^{4}\right)$ on $[-\pi, \pi]$

$$
\frac{\int_{-\pi}^{\pi} \sin \left(x^{5}\right)\left(\cos \left(x^{2}\right)+e^{x^{2}}+x^{4}\right) d x}{\pi}=\frac{0}{2 \pi}=0
$$

because f is an odd function.
9. (10 points) Find the area of the region enclosed by the curves:

$$
y=\cos (x) \quad \text { and } \quad y=-\cos (x)
$$

from 0 to π.
Hint: It might help to notice a certain symmetry in your picture!

Picture:

1A/Math 1A Summer/Exams/Finalarea.png

Then determine the points of intersection between the two curves:

$$
\begin{aligned}
\cos (x) & =-\cos (x) \\
2 \cos (x) & =0 \\
\cos (x) & =0 \\
x & =\frac{\pi}{2}
\end{aligned}
$$

On $\left[0, \frac{\pi}{2}\right], \cos (x)$ is above $-\cos (x)$, and on $\left[\frac{\pi}{2}, \pi\right],-\cos (x)$ is above $\cos (x)$, so we'll have to figure out $A+B$ as in the picture. However, notice the symmetry! Namely, $A=B$, so all we really need to calculate is $A+B=2 A$, that is:

$$
\begin{aligned}
2 \int_{0}^{\frac{\pi}{2}}(\cos (x)-(-\cos (x))) & d x \\
& =2 \int_{0}^{\frac{\pi}{2}} 2 \cos (x) d x \\
& =4 \int_{0}^{\frac{\pi}{2}} \cos (x) d x \\
& =4[\sin (x)]_{0}^{\frac{\pi}{2}} \\
& =4(1-0) \\
& =4
\end{aligned}
$$

10. (10 points) If $f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}$, find:
(a) Intervals of increase and decrease, and local max/min
$f^{\prime}(x)=x^{2}-x=x(x-1)=0$ if $x=0,1$.
Now drawing a sign table, you should see that:
f is increasing on $(-\infty, 0)$, decreasing on $(0,1)$, and increasing on $(1, \infty)$.
And hence f has a local max $f(0)=0$, and a local min $f(1)=\frac{1}{3}-\frac{1}{2}=-\frac{1}{6}$
(b) Intervals of concavity and inflection points (just give me the x-coordinate of the IP)
$f^{\prime \prime}(x)=2 x-1=0$ if $x=\frac{1}{2}$.
Hence f is concave down on $\left(-\infty, \frac{1}{2}\right)$ and concave up on $\left(\frac{1}{2}, \infty\right)$.
Moreover, f has an inflection point at $x=\frac{1}{2}$.

Bonus 1 (5 points) Fill in the gaps in the following proof that the function f is not integrable on $[0,1]$:

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } x \text { is rational } \\
1 & \text { if } x \text { is irrational }
\end{array}\right.
$$

Step 1: Pick x_{i}^{*} such that x_{i}^{*} is rational. Then:

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}^{*}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}(0) \\
& =\lim _{n \rightarrow \infty} 0 \\
& =0
\end{aligned}
$$

Step 2: Pick x_{i}^{*} such that x_{i}^{*} is irrational. Then:

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}^{*}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}(1) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} 1 \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}(n) \\
& =\lim _{n \rightarrow \infty} 1 \\
& =1
\end{aligned}
$$

Since we get two different answers for the integral, we have a contradiction. $\Rightarrow \Leftarrow$. And hence f is not integrable on $[0,1]$.

Note: See the handout 'Integration sucks!!!' for a nice discussion of this problem!

Bonus 2 (5 points) Another way to define $\ln (x)$ is:

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} d t
$$

Show using this definition only that $\ln \left(e^{x}\right)=x$.
Hint: Let $g(x)=\ln \left(e^{x}\right)=\int_{1}^{e^{x}} \frac{1}{t} d t$. Differentiate g, simplify, and antidifferentiate. Make sure you face the issue of the constant!

Let $f(t)=\frac{1}{t}$, then $g(x)=F\left(e^{x}\right)-F(1)$, so:

$$
g^{\prime}(x)=F^{\prime}\left(e^{x}\right)\left(e^{x}\right)-0=f\left(e^{x}\right)\left(e^{x}\right)=\frac{1}{e^{x}} e^{x}=1
$$

Since $g^{\prime}(x)=1$, we get $g(x)=x+C$. To figure out what C is, plug in $x=0$, and we get:

$$
\begin{aligned}
g(0) & =0+C \\
\int_{1}^{e^{0}} \frac{1}{t} d t & =C \\
\int_{1}^{1} \frac{1}{t} d t & =C \\
0 & =C \\
C & =0
\end{aligned}
$$

Hence $g(x)=x$, so $\ln \left(e^{x}\right)=x$

Bonus 3 (5 points) Define the Product integral $\prod_{a}^{b} f(x) d x$ as follows:
If we define $\Delta x, x_{i}$, and x_{i}^{*} as usual, then:
$\prod_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left(f\left(x_{1}^{*}\right)\right)^{\Delta x}\left(f\left(x_{2}^{*}\right)\right)^{\Delta x} \cdots\left(f\left(x_{n}^{*}\right)\right)^{\Delta x}$
(that is, instead of summing up the $f\left(x_{i}^{*}\right)$, we just multiply them!)
Show that this is nothing new, that is, express $\prod_{a}^{b} f(x) d x$ in terms of $\int_{a}^{b} f(x) d x$

Hint: How do you turn a product into a sum?

Let $P=\prod_{a}^{b} f(x) d x$. Then:

$$
\begin{aligned}
\ln (P) & =\ln \left(\lim _{n \rightarrow \infty}\left(f\left(x_{1}^{*}\right)\right)^{\Delta x}\left(f\left(x_{2}^{*}\right)\right)^{\Delta x} \cdots\left(f\left(x_{n}^{*}\right)\right)^{\Delta x}\right) \\
& =\lim _{n \rightarrow \infty} \ln \left(\left(f\left(x_{1}^{*}\right)\right)^{\Delta x}\left(f\left(x_{2}^{*}\right)\right)^{\Delta x} \cdots\left(f\left(x_{n}^{*}\right)\right)^{\Delta x}\right) \\
& =\lim _{n \rightarrow \infty} \ln \left(f\left(x_{1}^{*}\right)^{\Delta x}\right)+\ln \left(f\left(x_{2}^{*}\right)^{\Delta x}\right)+\cdots+\ln \left(f\left(x_{n}^{*}\right)^{\Delta x}\right) \\
& =\lim _{n \rightarrow \infty} \Delta x \ln \left(f\left(x_{1}^{*}\right)\right)+\Delta x \ln \left(f\left(x_{2}^{*}\right)\right)+\cdots+\Delta x \ln \left(f\left(x_{n}^{*}\right)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x \ln \left(f\left(x_{i}^{*}\right)\right) \\
& =\int_{a}^{b} \ln (f(x)) d x
\end{aligned}
$$

So $\ln (P)=\int_{a}^{b} \ln (f(x)) d x$, so $P=e^{\int_{a}^{b} \ln (f(x)) d x}$, hence:

$$
\prod_{a}^{b} f(x) d x=e^{\int_{a}^{b} \ln (f(x)) d x}
$$

